Publications by Year: 2016

Katikireddy KR, Jurkunas UV. Limbal Stromal Tissue Specific Stem Cells and Their Differentiation Potential to Corneal Epithelial Cells. Methods Mol Biol. 2016;1341 :437-44.Abstract
From the derivation of the first human embryonic stem (hES) cell line to the development of induced pluripotent stem (iPS) cells; it has become evident that tissue specific stem cells are able to differentiate into a specific somatic cell types. The understanding of key processes such as the signaling pathways and the role of the microenvironment in epidermal/epithelial development has provided important clues for the derivation of specific epithelial cell types.Various differentiation protocols/methods were used to attain specific epithelial cell types. Here, we describe in detail the procedure to follow for isolation of tissue specific stem cells, mimicking their microenvironment to attain stem cell characteristics, and their potential differentiation to corneal epithelial cells.
Halilovic A, Schmedt T, Benischke A-S, Hamill C, Chen Y, Santos JH, Jurkunas UV. Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy. Antioxid Redox Signal. 2016;24 (18) :1072-83.Abstract
AIMS: Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death. RESULTS: We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens. FECDi and FECD ex vivo specimens exhibited extensive mtDNA and nDNA damage as detected by quantitative PCR. Exposure to MN triggered an increase in mitochondrial superoxide levels and led to mtDNA and nDNA damage, while DNA amplification was restored with NAC pretreatment. Furthermore, MN exposure led to a decrease in ΔΨm and adenosine triphosphate levels in normal cells, while FECDi exhibited mitochondrial dysfunction at baseline. Mitochondrial fragmentation and cytochrome c release were detected in FECD tissue and after MN treatment of HCEnCs. Furthermore, cleavage of caspase-9 and caspase-3 followed MN-induced cytochrome c release in HCEnCs. INNOVATION: This study provides the first line of evidence that accumulation of oxidative DNA damage leads to rosette formation, loss of functionally intact mitochondria via fragmentation, and subsequent cell death during postmitotic cell degeneration of ocular tissue. CONCLUSION: MN induced rosette formation, along with mtDNA and nDNA damage, mitochondrial dysfunction, and fragmentation, leading to activation of the intrinsic apoptosis via caspase cleavage and cytochrome c release. Antioxid. Redox Signal. 24, 1072-1083.
Katikireddy KR, Schmedt T, Price MO, Price FW, Jurkunas UV. Existence of Neural Crest-Derived Progenitor Cells in Normal and Fuchs Endothelial Dystrophy Corneal Endothelium. Am J Pathol. 2016;186 (10) :2736-50.Abstract

Human corneal endothelial cells are derived from neural crest and because of postmitotic arrest lack competence to repair cell loss from trauma, aging, and degenerative disorders such as Fuchs endothelial corneal dystrophy (FECD). Herein, we identified a rapidly proliferating subpopulation of cells from the corneal endothelium of adult normal and FECD donors that exhibited features of neural crest-derived progenitor (NCDP) cells by showing absence of senescence with passaging, propensity to form spheres, and increased colony forming efficacy compared with the primary cells. The collective expression of stem cell-related genes SOX2, OCT4, LGR5, TP63 (p63), as well as neural crest marker genes PSIP1 (p75(NTR)), PAX3, SOX9, AP2B1 (AP-2β), and NES, generated a phenotypic footprint of endothelial NCDPs. NCDPs displayed multipotency by differentiating into microtubule-associated protein 2, β-III tubulin, and glial fibrillary acidic protein positive neurons and into p75(NTR)-positive human corneal endothelial cells that exhibited transendothelial resistance of functional endothelium. In conclusion, we found that mitotically incompetent ocular tissue cells contain adult NCDPs that exhibit a profile of transcription factors regulating multipotency and neural crest progenitor characteristics. Identification of normal NCDPs in FECD-affected endothelium holds promise for potential autologous cell therapies.

Liu C, Vojnovic D, Kochevar IE, Jurkunas UV. UV-A Irradiation Activates Nrf2-Regulated Antioxidant Defense and Induces p53/Caspase3-Dependent Apoptosis in Corneal Endothelial Cells. Invest Ophthalmol Vis Sci. 2016;57 (4) :2319-27.Abstract
PURPOSE: To examine whether Nrf2-regulated antioxidant defense and p53 are activated in human corneal endothelial cells (CEnCs) by environmental levels of ultraviolet A (UV-A), a known stimulator of oxidative stress. METHODS: Immortalized human CEnCs (HCEnCi) were exposed to UV-A fluences of 2.5, 5, 10, or 25 J/cm2, then allowed to recover for 3 to 24 hours. Control HCEnCi did not receive UV-A. Reactive oxygen species (ROS) were measured using H2DCFDA. Cell cytotoxicity was evaluated by lactate dehydrogenase (LDH) release. Levels of Nrf2, HO-1, NQO-1, p53, and caspase3 were detected by immunnoblotting or real-time PCR. Activated caspase3 was measured by immunoblotting and a fluorescence assay. RESULTS: Exposure of HCEnCi to 5, 10, and 25 J/cm2 UV-A increased ROS levels compared with controls. Nrf2, HO-1, and NQO-1 mRNA increased 1.7- to 3.2-fold at 3 and 6 hours after irradiation with 2.5 and 5 J/cm2 UV-A. At 6 hours post irradiation, UV-A (5 J/cm2) enhanced nuclear Nrf2 translocation. At 24 hours post treatment, UV-A (5, 10, and 25 J/cm2) produced a 1.8- to 2.8-fold increase in phospho-p53 and a 2.6- to 6.0-fold increase in activated caspase3 compared with controls, resulting in 20% to 42% cell death. CONCLUSIONS: Lower fluences of UV-A induce Nrf2-regulated antioxidant defense and higher fluences activate p53 and caspase3, indicating that even near-environmental levels of UV-A may affect normal CEnCs. This data suggest that UV-A may especially damage cells deficient in antioxidant defense, and thus may be involved in the etiology of Fuchs' endothelial corneal dystrophy (FECD).
Qazi Y, Hurwitz S, Khan S, Jurkunas UV, Dana R, Hamrah P. Validity and Reliability of a Novel Ocular Pain Assessment Survey (OPAS) in Quantifying and Monitoring Corneal and Ocular Surface Pain. Ophthalmology. 2016;123 (7) :1458-68.Abstract
PURPOSE: To validate the Ocular Pain Assessment Survey (OPAS), specifically designed to measure ocular pain and quality of life for use by eye care practitioners and researchers. DESIGN: A single-center cohort study was conducted among patients with and without corneal and ocular surface pain at initial and follow-up visits over a 6-month period. The content of the OPAS was guided by literature review, a body of experts, and incorporating conceptual frameworks from existing pain questionnaires. The Wong-Baker FACES Pain Rating Scale served as the gold standard for measuring the intensity of ocular pain. PARTICIPANTS: A total of 102 patients aged 18 to 80 years completed the OPAS at the initial visit. A total of 21 patients were followed up after treatment. METHODS: Indices of validity and internal consistency (Spearman's rank-order, rs, or Pearson's correlation coefficients, rp), and coefficient of reliability (Cronbach's α) were determined in addition to equivalence testing, exploratory factor analysis (EFA), and diagnostic analysis. MAIN OUTCOME MEASURES: Eye pain intensity was the primary outcome measure, and interference with quality of life (QoL), aggravating factors, associated factors, associated non-eye pain intensity, and self-reported symptomatic relief were the secondary outcome measures. RESULTS: The OPAS had criterion validity at both initial (rs = 0.71; n = 102; P < 0.01) and follow-up visits (rs = 0.97; n = 21; P < 0.01). Equivalence tests yielded OPAS and gold standard equivalence for both the initial and follow-up visits. The EFA supported 6 subscales (eye pain intensity at 24 hours and 2 weeks, non-eye pain intensity, QoL, aggravating factors, and associated factors) confirming multidimensionality. Cronbach's α >0.83 for all subscales established strong internal consistency, which correlated with the gold standard, including 24-hour eye pain intensity and QoL interference scores (rp = 0.81, 0.64, respectively P < 0.001). At follow-up, reduction in pain scores was accompanied by improvement in all dimensions of the OPAS. Percentage change in QoL correlated to percentage change in the gold standard (rp = 0.53; P < 0.05). The OPAS was sensitive (94%), specific (81%), and accurate (91%), with a diagnostic odds ratio >50. CONCLUSIONS: The OPAS is a valid, reliable, and responsive tool with strong psychometric and diagnostic properties in the multidimensional quantification of corneal and ocular surface pain intensity, and QoL.