Differentiation potential of limbal fibroblasts and bone marrow mesenchymal stem cells to corneal epithelial cells

Date Published:

2014 Mar


The cornea is covered by a stratified epithelium that is renewed by stem cells located in the peripheral region of the cornea known as the limbus. This stroma of the limbus contains stromal keratocytes that, when expanded in culture, are termed limbal fibroblasts (LFs). It is thought that LFs exhibit similar characteristics to bone marrow mesenchymal stem cells (BM MSCs) and help maintain the epithelial stem cell phenotype in the limbal region. In this study, we aimed at reprogramming stage-specific embryonic antigen-4 (SSEA4+) LFs and BM MSCs into corneal epithelial lineage using a three-dimensional culture system and embryonic stem cell medium. After enrichment, SSEA4+ cells showed a higher level of stem cell marker expression such as Sox2, Oct4, Nanog, Rex1, ABCG2, and TRA-1-60, and colony-forming efficiency than did SSEA4- cells. SSEA4+, as compared to SSEA4- cells, had a greater propensity to form spheres that, in turn, were induced into ectodermal lineage and further differentiated into functional corneal epithelium. Results show that LFs were similar to BM MSCs in marker profiles, and together with the differences noted between SSEA4+ and SSEA4- cells, point to LFs' being tissue-specific MSCs. However, LFs showed a greater potential for differentiation into corneal epithelium, indicating the potential importance of tissue-specific adult progenitors in their reprogramming capacity into cells of interest. This study opens a new avenue for investigating the molecular mechanism involved in maintaining a limbal stem cell niche and thus a potentially important clinical application to treat corneal epithelial stem cell loss.